Local Features

Readings: Shi and Tomasi
Lowe

Due: Problem Set #2

March 4, 2008

Today - Local Features

Matching image features across images is important for
recognition (indexing) and tracking

* Interest Features
« Correspondences
 Affine Patch Tracking

» Descriptors — Scale and Rotation Invariant Descriptors
(Lowe)

Correspondence using window matching

Correspondence using window matching

Points are highly individually ambiguous. ..

More umque matches are possible with small
regions of 1image.
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w, and 1y are corresponding i by i windows of pixels.

We define the window function :

W (v )= v[x-Fsusr+4 yv-S<vsy+ 4}

The SSD cost measures the intensity difference as a function of disparity :
Clerd)=  N[Lwy)-Iu—d.n]
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+ Even when the cameras are identical models, there
can be differences in gain and sensitivity.

* The cameras do not see exactly the same surfaces,
so their overall light levels can differ.

* For these reasons and more, it is a good idea to
normalize the pixels in each window:
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Images as Vectors

Image Windows as Vectors

Left Right “Unwrap™

d image to form
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them vnit length.

Possible Metrics

Image Metrics
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Local Features

Not all windows are good for matching

Aperture Problem and Normal Flow




Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Aperture Problem and Normal Flow

Optical flow constraint equation

Brightuess should stay
comstant as you track

motion I(.T+”(5f.._V+V§f..f+{ir) :I(J.‘,_V,f)

1* order Taylor series,
valid for small 7

I(x,p.0)+udtd +votl  + 6t =1(x,y,1)

Constraint equation

ul , +vI +1,=0

“BCCE" - Brighiness Change Constraint Eguation




Aperture Problem and Normal Flow

Lucas-Kanade: Integrade Gradients Over Patch

The gradient constraint:
Lu+l v+l =0
VI -u=-,

Defines a line in the (u,v) space

Normal Flow:\
I VI

IR

Assume a single velocity for all pixels within an image patch

E(u,v)= Z(Ix(r Wu+l (x,y)v -H'f)2
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Solve with:
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On the LHS: sum of the 2x2 outer produect
tensor of the gradient vector
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Selecting Good Features

Local Patch Analysis

* What’s a “good feature™?
— Satisfies brightness constancy
— Has sufficient texture variation
— Does not have too much texture variation
— Corresponds to a “real” surface patch
Does not deform too much over time

Good Features to Track

Harris Corner Detector
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A u = b

When is This Solvable?
+ A should be invertible
+ A should not be too small due to noise
— eigenvalues %, and %, of A should not be too small
+ A should be well-conditioned
— k4l kg should not be too large (%, = larger eigenvalue)

Both conditions satisfied when min(i., ,) > ¢

Same idea, based on the idea of auto-correlation

Important difference in all directions == interest point




Harris Corner Detector

Auto-correlation function for a point (x.v) and a shift (Ax. Av)

flxv)= ZU(-"»-."»] =I(x, +Ax, v, A
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Discret shifts can be avoided with the auto-correlation matrix
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Harris Corner Detector

Auto-correlation matrix
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* Auto-correlation matrix
— captures the structure of the local neighborhood
— measure based on eigenvalues of this matrix
+ 2 strong eigenvalues => interest point
+ 1 strong eigenvalue => contour
+ 0 eigenvalue => uniform region
+ Interest point detection
— threshold on the eigenvalues
— local maximum for localization

Selecting Good Features

Selecting Good Features

»yand i, are large

large 4., small 2 ,,

Selecting Good Features

small 7.,, small 7, ,,

Feature Distortion

+ Feature may change shape over time
— Need a distortion model to really make this work

Find displacement (u.v) that minimizes SSD error over feature region

ST H(Wale,y), Wyle, 1)) — Iz, y)]?
(w)erct
(minimize with respect to W, and W, )

Shi and Tomasi: use affine model for verification
Welz,y) = az+by+e
Wylz,y) = ex+ fy+g




Affine Motion

ufx, y)=agta,x+ ay

i

vix,y)=aztaxtasy

(xs8)=
((x,y). vix,y))

I(x+ulx;s a), 1) = [(x, 0

(Brighiness Constancy Assumprion)

Affine Motion

u(x.y)=a, +a,x+ay
viv.y)=a,+ax+agy
Substituting into the B.C.C.E.:

Io-u+I v+I =0

I(a,+a,x+a,y)+1I (a,+ax+agy)+1 =0

Each pixel provides 1 linear constraint in 6 global unknowns
(minimum 6 pixels necessary)

Least Square Minimization (over all pixels):

Err(d)= Z [Il.(al tax+ay)+ 1 (a, +asx+ aﬁy)+-1,] :

Today - Local Features

Matching image features across images is important for
recognition (indexing) and tracking

 Interest Features

* Correspondences

¢ Affine Patch Tracking

» Descriptors — Scale and Rotation Invariant Descriptors
(Lowe)

CVPR 2003 Tutorial

Recognition and Matching
Based on Local Invariant
Features

David Lowe
Computer Science Department
University of British Columbia

Object Recognition

* Definition: Identify an object and determine its pose
and model parameters

» Commercial object recognition

Currently a $4 billion/year industry for inspection and
assembly

Almost entirely based on template matching
» Upcoming applications

Mobile robots, toys, user interfaces

Location recognition

Digital camera panoramas, 3D scene modeling

Invariant Local Features

« Image content is transformed into local feature
coordinates that are invariant to translation, rotation,
scale, and other imaging parameters
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SIFT Features




Advantages of invariant local features

* Locality: features are local, so robust to occlusion and
clutter (no prior segmentation)

 Distinctiveness: individual features can be matched to
a large database of objects

* Quantity: many features can be generated for even
small objects

« Efficiency: close to real-time performance

 Extensibility: can easily be extended to wide range of
differing feature types, with each adding robustness

Scale invariance

Requires a method to repeatably select points in location and scale:

« The only reasonable scale-space kernel is a Gaussian
(Koenderink, 1984; Lindeberg, 1994)

* An efficient choice is to detect peaks in the difference of
Gaussian pyramid (Burt & Adelson, 1983; Crowley & Parker,
1984 — but examining more scales)

« Difference-of-Gaussian with constant ratio of scales is a close
approximation to Lindeberg’s scale-normalized Laplacian (can
be shown from the heat diffusion equation)

Scale space processed one octave at

a time

Scale
(First
octave)

Difference of
Gaussian Gaussian (DOG)

Key point localization

* Detect maxima and minima of
difference-of-Gaussian in scale space
« Fit a quadratic to surrounding values
for sub-pixel and sub-scale
interpolation (Brown & Lowe, 2002)
* Taylor expansion around point:
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« Offset of extremum (use finite
differences for derivatives):
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Select canonical orientation

* Create histogram of local
gradient directions computed at
selected scale

* Assign canonical orientation at
peak of smoothed histogram

» Each key specifies stable 2D
coordinates (x, y, scale,
orientation)

Example of keypoint detection

Threshold on value at DOG peak and on ratio of principle
curvatures (Harris approach)

4 (a) 233x189 image

(b) 832 DOG extrema

& (c) 729 left after peak
value threshold

(d) 536 left after testing
ratio of principle
curvatures




SIFT vector formation

Feature stability to noise

¢ Thresholded image gradients are sampled over 16x16 array
of locations in scale space

¢ Create array of orientation histograms
« 8 orientations x 4x4 histogram array = 128 dimensions

Example: 8x8 array locations, 8 orientations x 2 x2 histogram array
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Image gradients Keypoint descriptor
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* Match features after random change in image scale &
orientation, with differing levels of image noise

* Find nearest neighbor in database of 30,000 features
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Keypoint lecation ——

. H Location & orientation —=
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Feature stability to affine change

Distinctiveness of features

* Match features after random change in image scale &
orientation, with 2% image noise, and affine distortion

* Find nearest neighbor in database of 30,000 features
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* Vary size of database of features, with 30 degree affine
change, 2% image noise
* Measure % correct for single nearest neighbor match
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Number of keypoints in database (log scabe)

A good SIFT features tutorial

http://www.cs.toronto.edu/~jepson/csc2503/tutSIFT04.pdf
By Estrada, Jepson, and Fleet.




